

Plasma-Surface Interactions in Tokamaks

James Davis

University of Toronto Institute for Aerospace Studies

Outline

- Introduction
- Erosion and plasma contamination
- Redeposition of eroded material
- Tritium retention in wall materials
- ITER Current Status

- Next to a fusion plasma is a very hostile environment
- All plasma-facing surfaces will be subject to a wide variety of particle interaction processes.

Details of the surface

Adapted from B.D. Wirth et al., MRS Bulletin 36 (2011) 216

Outline

Introduction

• Erosion and plasma contamination

- Erosion processes
- Impurity transport
- Radiation losses
- Which material?
- Redeposition of eroded material
- Tritium retention in wall materials
- ITER Current Status

- Physical sputtering
 - Billiard ball collisions
- Chemical erosion
 - Chemical reactions between hydrogen and wall atoms
- Radiation-enhanced sublimation
 - Surface binding energy is reduced at high temperature
- Melting

- Physical sputtering
 - Billiard ball collisions
- Chemical erosion
 - Chemical reactions between hydrogen and wall atoms
- Radiation-enhanced sublimation
 - Surface binding energy is reduced at high temperature
- Melting

- Physical sputtering
 - Billiard ball collisions
- Chemical erosion
 - Chemical reactions between hydrogen and wall atoms
- Radiation-enhanced sublimation
 - Surface binding energy is reduced at high temperature
- Melting

Physical sputtering

- D⁺/T⁺ sputtering yields all fall about 1 - 2%
- Differences lie in the threshold energy

Physical sputtering

- D⁺/T⁺ sputtering yields all fall about 1 - 2%
- Differences lie in the threshold energy

- Physical sputtering
 - Billiard ball collisions
- Chemical erosion
 - Chemical reactions between hydrogen and wall atoms
- Radiation-enhanced sublimation
 - Surface binding energy is reduced at high temperature
- Melting

- Once melting starts, things can only get worse
- Large scale loss of material

Plasma transport of impurities

Atoms released from the wall have three options:

- Prompt redeposition
 - Atoms are ionized within one Larmor radius of the surface
- Carried by the scrap-off plasma to the divertor
- Transport into the core plasma

Plasma transport of impurities

Atoms released from the wall have three options:

- Prompt redeposition
 - Atoms are ionized within one Larmor radius of the surface

Plasma transport of impurities

Atoms released from the wall have three options:

- Prompt redeposition
 - Atoms are ionized within one Larmor radius of the surface
- Carried by the scrap-off plasma to the divertor
- Transport into the core plasma

ASDEX-Upgrade

Porous plug gas injection system

• Gas can be injected into the tokamak edge plasma without significant disruption to the local plasma properties

DIII-D tokamak

CH band emissions in the DIII-D tokamak

- Modelling of the emissions allows us to evaluate plasma transport parameters
- A key result was a calibration of spectrometer measurements for hydrocarbon influx

C⁺ line emissions in the DIII-D tokamak

Impurities in the core plasma

Impurities in the core plasma have two detrimental effects on fusion power:

- Increased radiation bremsstrahlung – line radiation
- 2. Plasma dilution additional electrons increase pressure

Impurities in the core plasma

Impurities in the core plasma have two detrimental effects on fusion power:

- Increased radiation bremsstrahlung ~ Z²
 line radiation
- 2. Plasma dilution additional electrons increase pressure

Impurities in the core plasma

Impurities in the core plasma have two detrimental effects on fusion power:

- Increased radiation bremsstrahlung – line radiation
- 2. Plasma dilution additional electrons increase pressure

P = nkT

Institute for Aerospace Studies UNIVERSITY OF TORONTO

Adam McLean, PPPL, private communication 23

Which material is best?

Outline

- Introduction
- Erosion and plasma contamination
- Redeposition of eroded material
 - Deposited layers
 - Slag removal
- Tritium retention in wall materials
- ITER Current Status

- All eroded atoms, whether they make it to the core plasma or not, will eventually be deposited somewhere.
- In current tokamaks, regions of net deposition tend to be near the divertor, and fairly small in area.
- Even small erosion rates may lead to large deposit thicknesses.

Annual slag amounts

Device	P _{SOL} [MW]	τ _{annual} run time [s/year]	E ^{year} load [TJ/yr]	Beryllium net wall erosion rate [kg/yr]	boron net wall erosion rate [kg/yr]	carbon net wall erosion rate [kg/yr]	silicon net wall erosion rate [kg/yr]	iron net wall erosion rate [kg/yr]	tungsten net wall erosion rate [kg/yr]
DIII-D	20	104	0.2	0.13	0.11	0.08	0.39	1.0	0.16
JT-60SA	34	10 ⁴	0.34	0.22	0.19	0.15	0.66	1.7	0.27
EAST	24	105	2.4	1.6	1.2	0.82	4.7	12	1.8
ITER	100	106	100	77, 60 ¹ , 29 ²	64	44, 54 ¹ , 53 ²	196	500, 187 ¹	80, 401, 412
CFETR ⁴	1000	1.2x10 ⁷	12000	7800	6400	4400	23,500	60,000	9,500
ST Pilot P ⁵	50	10 ⁷ est.	500	330	270	190	1,000	2500	400
ARC Pilot P ⁶	100	10 ⁷ est.	1000	650	530	370	1,960	5,000	790
Comp. Pilot P ⁵	260	10 ⁷ est.	2600	1700	3200	1000	5100	13,000	2000
Reactor	400	2.5x10 ⁷	10000	6500, 21000 ³	5300	3700	19,600	50,000	7900, 5000 ³
				<i>4.3</i> ^{<i>a</i>}	2.9^{a}	1.8^{a}	4.2^{a}	5.4 ^a	$0.26^a, 0.16^a$
				3.5^{b}	2.1^{b}	1.6^{b}	8.5^{b}	6.4^{b}	$0.42^b, 0.26^b$

Stangeby et al., PPCF, 2022

Annual slag amounts

DIII-D 20 10 ⁴ 0.2 0.13 0.11 0.08 0.39 1.0 0.	r
DIII-D 20 10^4 0.2 0.13 0.11 0.08 0.39 1.0 0.	
	5
JT-60SA 34 10 ⁴ 0.34 0.22 0.19 0.15 0.66 1.7 0.1	7
EAST 24 10 ⁵ 2.4 1.6 1.2 0.82 4.7 12 1.	
ITER 100 10 ⁶ 100 77, 60 ¹ , 29 ² 64 44, 54 ¹ , 53 ² 196 500, 187 ¹ 80, 40	, 41 ²
CFETR ⁴ 1000 1.2x10 ⁷ 12000 7800 6400 4400 23,500 60,000 9,5	0
ST Pilot P^5 50 10 ⁷ est. 500 330 270 190 1,000 2500 40)
ARC Pilot P ⁶ 100 10 ⁷ est. 1000 650 530 370 1,960 5,000 79)
Comp. Pilot P ⁵ 260 10 ⁷ est. 2600 1700 3200 1000 5100 13,000 20	0
Reactor 400 2.5x10 ⁷ 10000 6500, 21000 ³ 5300 3700 19,600 50,000 7900,	000 ³
4.3^a 2.9^a 1.8^a 4.2^a 5.4^a 0.26^a ,).16 ^a
3.5^b 2.1^b 1.6^b 8.5^b 6.4^b $0.42^b, 0$	26 ^b

Stangeby et al., PPCF, 2022

Annual slag amounts

Device	P _{SOL} [MW]	τ _{annual} run time [s/year]	E ^{year} [TJ/yr]	Beryllium net wall erosion rate [kg/yr]	boron net wall erosion rate [kg/yr]	carbon net wall erosion rate [kg/yr]	silicon net wall erosion rate [kg/yr]	iron net wall erosion rate [kg/yr]	tungsten net wall erosion rate [kg/yr]
DIII-D	20	104	0.2	0.13	0.11	0.08	0.39	1.0	0.16
JT-60SA	34	104	0.34	0.22	0.19	0.15	0.66	1.7	0.27
EAST	24	105	2.4	1.6	1.2	0.82	4.7	12	1.8
ITER	100	106	100	77, 60 ¹ , 29 ²	64	44, 54 ¹ , 53 ²	196	500, 1871	80, 40 ¹ , 41 ²
CFETR ⁴	1000	1.2x10 ⁷	12000	7800	6400	4400	23,500	60,000	9,500
ST Pilot P ⁵	50	10 ⁷ est.	500	330	270	190	1,000	2500	400
ARC Pilot P ⁶	100	10 ⁷ est.	1000	650	530	370	1,960	5,000	790
Comp. Pilot P ⁵	260	10 ⁷ est.	2600	1700	3200	1000	5100	13,000	2000
Reactor	400	2.5x10 ⁷	10000	6500, 21000 ³	5300 2.9 ^a	3700 1.8 ^a	19,600 4.2 ^a	50,000 5.4 ^a	7900, 5000 ³ 0 26 ^a , 0.16 ^a
				3.5^{b}	2.1^{b}	1.6°	8.5 ^b	6.4^{b}	$0.42^b, 0.26^b$

Stangeby et al., PPCF, 2022

Outline

- Introduction
- Erosion and plasma contamination
- Redeposition of eroded material
- Tritium retention in wall materials
 - Implantation and permeation
 - Neutron damage
 - Codeposited layers
- ITER Current Status

Tritium cycle

- Tritium does not occur naturally (T_{1/2} ~ 12 yrs) any reactor will need to be self-sufficient
- Produced from lithium: e.g., $n + {}^{6}Li \rightarrow T + {}^{4}He$
- Using the neutron from the D + T \rightarrow ⁴He + n reaction
- With tritium breeding ratios ~ 1.1 T/n, there will only be room for small losses of tritium through the entire fuel cycle

D retention in tungsten due to D⁺ implantation

Details of the surface

Adapted from B.D. Wirth et al., MRS Bulletin 36 (2011) 216

Details of the surface

Adapted from B.D. Wirth et al., MRS Bulletin 36 (2011) 216

• Where does all the hydrogen go?

Andrew FED 1999

Details of the surface

Adapted from B.D. Wirth et al., MRS Bulletin 36 (2011) 216

Codeposition:

- Redeposited layers can trap large amounts of hydrogen
- The amount trapped does not saturate
- Higher temperatures
 are better

Outline

- Introduction
- Erosion and plasma contamination
- Redeposition of eroded material
- Tritium retention in wall materials
- ITER Current Status

- First operation 2034
 - Inertially-cooled W first wall
- Full D-T operation 2039
 - Water-cooled W first wall

- First operation 2034
 - Inertially-cooled W first wall
- Full D-T operation 2039
 - Water-cooled W first wall

Summary

"Taming the plasma-wall interface" remains one of the greatest challenges in the quest to develop commercial fusion reactors.

JW Davis SPANS 2024

Figure 7. Evolution of fusion triple product. Tokamak researchers have worked long and hard to gradually improve performance to the point where devices are approaching energy gain. Alternative approaches have a long way to go but proponents believe they can accelerate development. (Points shown for Tri Alpha used deuterium as fuel, not the proton-boron fuel it hopes to use.) (Figure courtesy of Dan Brunner, Commonwealth Fusion Systems). (Online version in colour.)

Technology Development

- Tritium breeding materials, tritium extraction
- Tritium handling technology
- Neutron damage materials studies
- High temperature cooling He gas cooling
- High temperature superconductors
- Remote maintenance radioactive environments

2.3 Plasma Transport: 1D SOL Model

From Stangeby, 2000